Cassane-Type Diterpenes from the Seeds of *Caesalpinia crista*

by Sarot Cheenpracha^a), Chatchanok Karalai^{*a}), Chanita Ponglimanont^a), Kan Chantrapromma^b), and Surat Laphookhieo^c)

^a) Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand (phone: +66-7428-8444; fax: +66-7421-2918; e-mail: chatchanok.k@psu.ac.th)

^b) Research Unit of Natural Products Utilization, School of Science, Walailak University, Thasala, Nakhon Si Thammarat 80160, Thailand

^c) School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand

A new dimer 1 and two new cassane-type diterpenes 2 and 3, designated taepeenin J-L, were isolated from the seeds of *Caesalpinia crista* L. Compound 1 possesses a dimeric vouacapane skeleton. Their structures were elucidated on the basis of spectroscopic analysis.

Introduction. – *Caesalpinia crista* L., known locally as 'Taepee' in Thai, is a climber distributed from India and Ceylon through most of Southeast Asia to the Ryu-Kyu Islands, Queensland, and Caledonia [1]. In the preceding paper, we isolated taepeenin A–I and nortaepeenin A and B from the stems and roots of *C. crista* [2]. As a continuation of our study on this plant, we now report the isolation of a new dimer **1** and of two new cassane-type diterpenes **2** and **3** along with three known compounds, $(5\alpha,8\beta)$ -vouacapane (**4**) [3], $(5\alpha,6\beta,8\beta)$ -vouacapan-6-ol (**5**) [4], and (5α) -vouacapa-8(14),9(11)-diene (**6**) [5] from the seeds of *C. crista*¹).

Results and Discussion. – The optically active taepeenin J (1) was obtained as a viscous oil and has the molecular formula $C_{40}H_{54}O_2$ based on HR-EI-MS (M^+ at m/z 566.4109). The UV spectrum (λ_{max} 217, 255, 283, and 293 nm) suggested the presence of a benzofuran chromophore [6]. The ¹H- and ¹³C-NMR (*Tables 1* and 2), HMBC, and NOESY data established the dimeric structure of taepeenin J, which was confirmed by comparison of the NMR data with those of **4** [3] and **6** [5].

The ¹³C-NMR and DEPT data of **1** showed 40 C-atoms. Twelve of these were sp² C-atoms, attributable to 4 CH and 8 quaternary C-atoms. The ¹H-NMR data displayed two fragments, **1a** and **1b**, both being a cassane-type diterpene. Fragment **1a** displayed the presence of three tertiary Me groups at δ (H) 1.24 (*s*, Me(20)), 0.95 (*s*, Me(18)), and 0.94 (*s*, Me(19)), one aromatic Me group at δ (H) 2.28 (*s*, Me(17)), a CH at δ (H) 1.35 (*dd*, J=12.6, 2.1 Hz, H–C(5)), and two aromatic protons at δ (H) 7.26 (*s*, H–C(11)), and 6.08 (*s*, H–C(15)). These data indicated that fragment **1a** and **6** [5] were closely related, except for the disappearance of the aromatic proton signal at δ (H) 7.51 (H–C(16)) in fragment **1a**. The ¹H-NMR data of fragment **1b** showed the presence of four tertiary Me groups at δ (H) 1.64 (*s*, Me(17')), 0.90 (*s*, Me(20')), 0.82 (*s*, Me(19')), and 0.75 (*s*, Me(18')), and three aliphatic CH signals at δ (H) 1.65–1.75 (*m*, H–C(9')), 1.64–1.70 (*m*, H–C(8')), and 0.73 (*dd*, J=10.8, 2.1 Hz, H–C(5')). Resonances at δ (H) 7.22

¹⁾ Arbitrary numbering; for systematic names, see the *Exper. Part*.

^{© 2006} Verlag Helvetica Chimica Acta AG, Zürich

and 6.08 (each d, J = 1.8 Hz) were typical of a 1,2-disubstituted furan. The ¹H-NMR data of fragment **1b** were almost identical to those of **4** [3], except for the splitting pattern of the Me signal (Me(17')) in **1b** which was a *s* at δ (H) 1.64 but a *d* at δ (H) 0.94 in **4**. The connectivity of both fragments was confirmed by HMBC correlations (*Figure*, *a*). The Me protons at δ (H) 1.64 (Me(17')) showed correlations with the C-atoms at δ (C) 162.3 (C(16)), 121.9 (C(13')), 44.2 (C(8')), and 40.3 (C(14')), a CH proton at δ (H) 1.64–1.70 (H–C(8')) with the C-atoms at δ (C) 162.3 (C(16)), 121.9 (C(12)), 127.3 (C(14)), 126.4 (C(13)), and 40.3 (C(14')), confirming that fragments **1a** and **1b** were connected at C(16) and C(14'), respectively. The relative configuration at C(14') was determined on the basis of NOESY experiments (*Figure*, *b*). The cross-peaks H–C(5')/H–C(9') and H–C(9')/Me(17') suggested the α -axial orientation of H–C(5'), H–C(9'), and Me(17').

Figure. a) Major HMBC correlations and b) important NOESY cross-peaks of dimer 1

Taepeenin K (2) has the molecular formula $C_{20}H_{32}O(M^+ \text{ at } m/z \text{ 288.2466})$ as determined by HR-EI-MS. The IR (1682 cm⁻¹) and UV (λ_{max} 224 nm) absorption bands were characteristic of a conjugated carbonyl functionality. The structure of 2 was established

	1a	1b ^b)	2	3
CH ₂ (1)	2.29–2.37 (<i>m</i>),	1.67–1.74 (<i>m</i>),	1.60–1.80 (<i>m</i>),	1.65–1.77 (<i>m</i>),
	1.42 - 1.52 (m)	0.99 - 1.06 (m)	0.88 - 1.15 (m)	0.86 - 1.00 (m)
$CH_{2}(2)$	1.95–2.03 (<i>m</i>),	1.61 - 1.69 (m),	1.62–1.74 (<i>m</i>),	1.44–1.58 (<i>m</i>),
	1.79–1.87 (<i>m</i>)	1.43–1.55 <i>(m)</i>	1.39–1.57 (<i>m</i>)	1.36–1.41 (<i>m</i>)
CH ₂ (3)	1.42–1.50 (<i>m</i>),	1.38–1.44 <i>(m)</i> ,	1.32 - 1.50 (m),	1.35–1.47 (<i>m</i>),
	1.36–1.42 (<i>m</i>)	1.13–1.17 <i>(m)</i>	1.09–1.29 (<i>m</i>)	1.09 - 1.20 (m)
H–C(5)	1.35(dd, J = 12.6, 2.1)	0.73 (<i>dd</i> , <i>J</i> =10.8, 2.1)	0.89 - 0.93 (m)	0.78 - 0.88 (m)
$CH_{2}(6)$	1.58–1.67 (<i>m</i>),	1.51 - 1.57 (m),	0.95 - 1.05 (m)	1.58–1.67 (<i>m</i>),
	1.45–1.51 (<i>m</i>)	1.19–1.23 (<i>m</i>)		1.20–1.35 (m)
$CH_{2}(7)$	2.90 (dd, J = 17.1,	2.08-2.13 (m),	1.49–1.53 (<i>m</i>),	1.46–1.54 (<i>m</i>)
	3.3), 2.68–2.72 (<i>m</i>)	2.04–2.08 (m)	1.30 - 1.40 (m)	
H–C(8)	-	1.64–1.70 (<i>m</i>)	1.43–1.53 (<i>m</i>)	1.50–1.57 (m)
H–C(9)	-	1.65 - 1.75(m)	1.10 - 1.24 (m)	1.08–1.19 (<i>m</i>)
H-C(11) or	7.26 (s)	2.76 (dd, J = 16.5, 6.0),	1.80-2.00 (m),	1.71 - 1.82 (m),
$CH_2(11)$		2.45 (dd, J = 16.5, 9.6)	1.19–1.28 (<i>m</i>)	0.90 - 1.01 (m)
CH ₂ (12)	-	_	3.18 (br. <i>dd</i> , <i>J</i> =13.8,	2.39–2.50 (<i>m</i>),
			3.0), 2.10–2.21 (<i>m</i>)	1.84–1.94 (<i>m</i>)
H–C(14)	-	_	2.30-2.40(m)	2.17-2.24 (m)
H–C(15)	6.08 (s)	6.08 (d, J = 1.8)	5.83 (dd, J = 8.4, 0.9)	5.37 (td , J = 7.2,
				1.5)
H-C(16) or	-	7.22 (d, J = 1.8)	10.00 (d, J = 8.4)	4.12 (d, J = 7.2)
$CH_{2}(16)$				
Me(17)	2.28(s)	1.64(s)	1.05 (d, J = 7.2)	0.95 (d, J = 7.2)
Me(18)	0.95(s)	0.75(s)	0.87(s)	0.86(s)
Me(19)	0.94 (s)	0.82(s)	0.83(s)	0.82(s)
Me(20)	1.24 (s)	0.90 (s)	0.81 (s)	0.79 (s)

Table 1. ¹H-NMR Data (300 MHz) of **1-3** in CDCl₃. δ (H) in ppm, J in Hz^a)

^a) Assignments were made using HMQC and HMBC data. ^b) The atom labelling is H–C(1'), H–C(2'), H–C(3'), *etc.*

by its ¹H- and ¹³C-NMR (*Tables 1* and 2), HMBC, and NOESY data and comparison with those of **4** [3].

The ¹³C-NMR and DEPT spectrum of **2** exhibited a total of 20 C-atoms, with one C=O at δ (C) 191.0 and two sp² C-atoms at δ (C) 172.0 and 123.9. The ¹H-NMR data showed the presence of an aldehyde proton at δ (H) 10.00 (d, J = 8.4 Hz, H–C(16)) which coupled with an olefinic proton at δ (H) 5.83 (dd, J = 8.4, 0.9 Hz, H–C(15)). This indicated that the conjugated carbonyl group was at an exocyclic C=C bond. Signals of three tertiary Me groups at δ (H) 0.87 (Me(18)), 0.83 (Me(19)), and 0.81 (Me(20)), and a Me d at δ (H) 1.05 (d, J = 7.2 Hz, Me(17)) were displayed similarly to those of **4** [3]. The observed HMBC correlations between the Me protons at δ (H) 1.05 (Me(17)) with C-atoms at δ (C) 172.0 (C(13)), 45.2 (C(14)), and 40.8 (C(8)), and an olefinic proton at δ (H) 5.83 (H–C(15)) with C-atoms at δ (C) 45.2 (C(14)) and 24.5 (C(12)) confirmed that the C=C bond was attached at C(13). The relative configuration of **2** was determined on the basis of coupling constants and NOESY experiments. The (E)-configuration was determined by a NOESY cross-peak between the olefinic proton at δ (H) 5.83 (H–C(15)) and a CH proton at δ (H) 2.35 (H–C(14)).

	1 a	1b ^a)	2	3
C(1)	39.9	39.4	39.6	39.7
C(2)	19.2	18.8	18.8	18.9
C(3)	41.7	41.8	42.1	42.2
C(4)	33.5	33.1	33.2	33.2
C(5)	49.9	54.2	55.2	55.8
C(6)	19.5	21.4	21.6	21.7
C(7)	28.0	28.6	31.3	31.7
C(8)	127.3	44.2	40.8	40.7
C(9)	146.8	47.5	48.0	48.4
C(10)	38.4	37.6	37.1	37.0
C(11)	104.3	22.1	27.0	26.6
C(12)	153.3	150.6	24.5	23.7
C(13)	126.4	121.9	172.0	151.0
C(14)	127.3	40.3	45.2	44.3
C(15)	102.6	108.5	123.9	118.7
C(16)	162.3	140.6	191.0	58.7
C(17)	15.9	24.6	14.1	14.4
C(18)	33.3	33.4	33.7	33.7
C(19)	21.7	22.1	22.0	22.1
C(20)	25.3	14.3	14.0	14.2

Table 2. ¹³C-NMR Data (75 MHz) of 1-3 in CDCl₃. $\delta(C)$ in ppm.

Taepeenin L (3) showed the molecular ion M^+ at m/z 290.2603 in the HR-EI-MS in agreement with the formula $C_{20}H_{34}O$. The presence of an OH functionality was evident from the IR absorption at 3409 cm⁻¹. The ¹H- and ¹³C-NMR data of 3 (*Tables 1* and 2) showed characteristics similar to those of 2 except that a CH₂O signal (δ (H) 4.12 (d, J=7.2 Hz)) replaced the aldehyde-proton signal (δ (H) 10.00). This finding was supported by the HMBC spectrum of 3 (correlation CH₂(16)/C(13) and C(15)). Therefore, taepeenin L was determined to be 3.

Conclusions. – Several cassane-type diterpenoids have already been isolated from plants of the genus *Caesalpinia*, *e.g.*, from *C. bonducella* [6][7], *C. minax* [8]–[10], and *C. pulcherrima* [11]. We now reported the isolation of a new dimer and two new cassane-type diterpenes from *C. crista* with 5-deoxycassane skeletons. The isolated dimer **1** was structurally derived from compounds **4** and **6** which are linked in **1** at C(14) and C(16), respectively.

The authors are grateful to the *Higher Education Development Project, Postgraduate Education and Research Program in Chemistry*, the *Thailand Research Fund* through the *Royal Golden Jubilee Ph.D. Program* (Grant No. PHD/0157/2547), and Prince of Songkla University through the 'Natural Products from Mangrove Plants and Synthetic Materials Research Unit' (NSU) and Graduate School for financial support.

Experimental Part

General. Quick column chromatography (QCC) and column chromatography (CC): silica gel 60 F_{254} (Merck) and silica gel 100 (Merck), respectively. Anal. TLC: precoated plates of silica gel 60 F_{254} . M.p.: Fisher-John melting point apparatus. $[a]_D$: Autopol^R II automatic polarimeter. UV Spectra: Specord S 100 (Analytikjena); λ_{max} (log ε) in nm. IR Spectra: Perkin-Elmer FTS FT-IR spectrophotometer; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: 500-MHz Varian Unity-Inova and 300-MHz Bruker FT NMR-Ultra-ShieldTM spectrometers; CDCl₃ solns.; δ in ppm rel. to SiMe₄, as an internal reference, J in Hz. EI-MS: MAT-95-XL mass spectrometer; in m/z.

Plant Material. The seeds of *C. crista* L. were collected from Trang province, Thailand, in May 2004. Identification was made by Prof. *Puangpen Sirirugsa*, Department of Biology, Faculty of Science, Prince of Songkla University, and a specimen (No. SC03) deposited at the Prince of Songkla University Herbarium.

Extraction and Isolation. The seeds (110.7 g) of *C. crista* were extracted with acetone at r.t. for 5 days. The extract was evaporated and the residue (16.3 g) separated by QCC (hexane/AcOEt mixtures): *Fractions S1–S5. Fr. S2* (677.9 mg) was purified by CC (CH₂Cl₂/hexane 1:19): taepeenin J (1; 17.3 mg) and $(5\alpha,8\beta)$ -vouacapane (4; 11.8 mg). *Fr. S3* (150.0 mg) was separated by CC (AcOEt/hexane 1:19): (5 α)-vouacapa-8(14),9(11)-diene (6; 4.8 mg) and $(5\alpha,6\beta,8\beta)$ -vouacapan-6-ol (5; 6.9 mg). *Fr. S4* (118.5 mg) was purified by CC (AcOEt/hexane 1:9) followed by prep. TLC (AcOEt/hexane 1:9): taepeenin K (2; 7.3 mg) and L (3; 12.4 mg).

Taepeenin J (=1,1',2,2',3,3',4,4',4a,4'a,5,5',6,6',6a,7,11,11a,11b,11'b-Eicosahydro-4,4,4',4',7,7',11b, 11'b-Octamethyl-7,9'-biphenanthro[3,2-b]furan; 1): Viscous oil. $[a]_{D}^{27} = +36.6 \ (c=0.27, \ CHCl_3)$. UV (CHCl₃): 217 (4.12), 255 (4.00), 283 (3.67), 293 (3.66). IR (neat): 1652. ¹H- and ¹³C-NMR: Tables 1 and 2. HR-EI-MS: 566.4109 (M^+ , $C_{40}H_{54}O_2^+$; calc. 566.4124).

Taepeenin K (=[*Dodecahydro-I*,4*b*,8,8-tetramethylphenanthren-2(1H)-ylidene]acetaldehyde; **2**): Amorphous solid. M.p. 189–190°. $[a]_{D}^{27}$ = +28.3 (*c*=0.07, CHCl₃). UV (CHCl₃): 224 (3.24). IR (neat): 1682. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-EI-MSI: 288.2466 (*M*⁺, C₂₀H₃₂O⁺; calc. 288.2453).

Taepeenin L (=2-[*Dodecahydro-1,4b,8,8-tetramethylphenanthren-2(1H)-ylidene]ethanol*; **3**): Viscous oil. $[a]_{D}^{27}$ = +23.0 (*c*=0.06, CHCl₃). UV (CHCl₃): 222 (3.40). IR (neat): 3409. ¹H- and ¹³C-NMR: *Tables 1* and 2. HR-EI-MS: 290.2603 (*M*⁺, C₂₀H₃₄O⁺; calc. 290.2610).

REFERENCES

- [1] P. B. Tomlinson, 'The Botany of Mangroves' Cambridge University Press, UK, 1986, p. 257-258.
- [2] S. Cheenpracha, R. Srisuwan, C. Karalai, C. Ponglimanont, S. Chantrapromma, K. Chantrapromma, H. K. Fun, S. Anjum, Atta-ur-Rahman, *Tetrahedron* 2005, 61, 8656.
- [3] R. L. de O. Godoy, P. D. de D. B. Lima, A. C. Pinto, F. R. de Aquino Neto, *Phytochemistry* 1989, 28, 642.
- [4] F. N. P. Mendes, E. R. Silveira, Phytochemistry 1994, 35, 1499.
- [5] A. N. Jadhav, N. Kaur, K. K. Bhutani, Phytochem. Anal. 2003, 14, 315.
- [6] D. L. Lyder, S. R. Peter, W. F. Tinto, S. M. Bissada, S. McLean, W. F. Reynolds, J. Nat. Prod. 1998, 61, 1462.
- [7] S. Peter, W. F. Tinto, S. McLean, W. F. Reynolds, M. Yu, Phytochemistry 1998, 47, 1153.
- [8] R. W. Jiang, S. C. Ma, Z. D. He, X. S. Huang, P. P. H. But, H. Wang, S. P. Chan, V. E. C. Ooi, H. X. Xu, T. C. W. Mak, *Bioorg. Med. Chem.* 2002, *10*, 2161.
- [9] R. W. Jiang, P. P. H. But, S. C. Ma, W. C. Ye, S. P. Chan, T. C. W. Mak, *Tetrahedron Lett.* 2002, 43, 2415.
- [10] R. W. Jiang, P. P. H. But, S. C. Ma, T. C. W. Mak, *Phytochemistry* **2001**, *57*, 517.
- [11] C. Y. Ragasa, J. G. Hofilena, J. A. Rideout, J. Nat. Prod. 2002, 65, 1107.

Received January 17, 2006